Machine Translated by Google

Creation of a technology for cleaning the surface of minerals

Knyazeva Victoria

Problem: Due

to the transition to deep horizons of ore mining, altered ore blocks are very common. In the altered ore blocks, kimberlites are to varying degrees transformed into clay minerals.

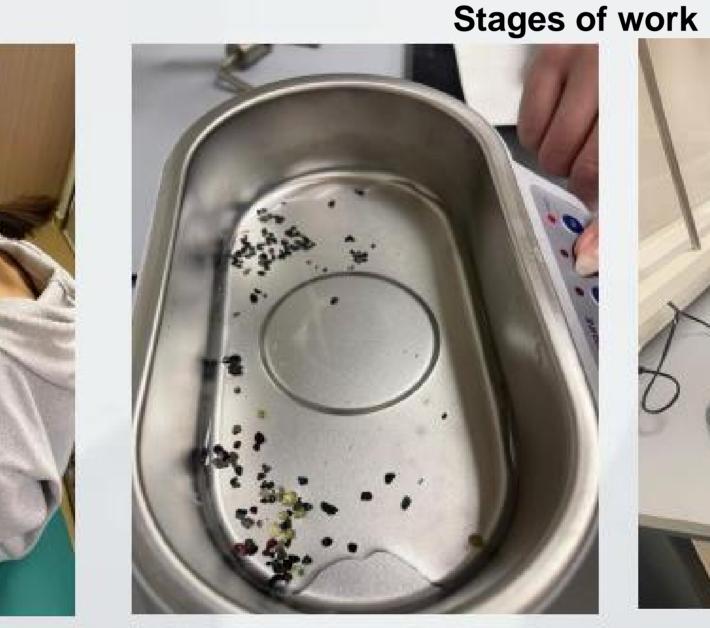
Purpose: To create a technology for cleaning the surface of diamonds to improve the performance of enrichment processes.

Tasks: 1.

Analysis and collection of data by methods cleaning.

2. Selection and justification of methods. 3. Creation of cleaning technology.

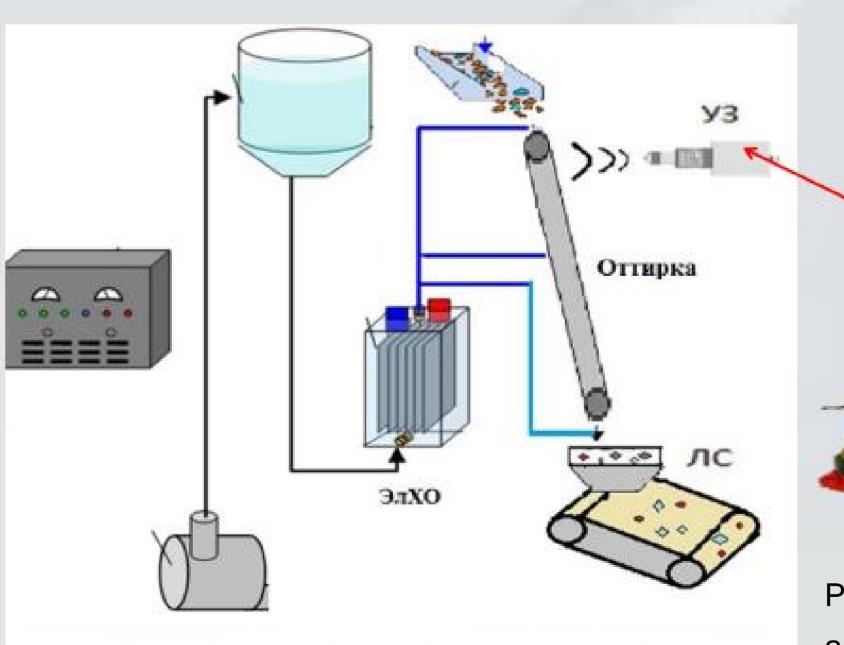
make up to 96% of the binder mass of kimberlites, which are concentrated on the surface of diamonds and make it difficult


extraction processes

Data collection

Cleaning technology Application Special		pros	Minuses
Mechanical scrubbing	equipment included in	cleans up impurities with all minerals	Increases concentrate, additional expense
	enrichment scheme		electricity
Thermal	Heating water in the factory	cleans up carbonate impurities minerals	Big consumption electricity
Ultrasonic	Embedded in initial scheme	cleans up impurities with all minerals	not big consumption electricity, selection special modes
Electrochemical	Embedded in original scheme	Preventing no the formation of impurities on surfaces	Big consumption electricity
Combined	Embedded in original scheme	cleans up impurities with all minerals	Selection special modes

Schematic diagram of fixation (1.2.3) and removal (A.B.V.D) of hydrophilizing mineral formations from the diamond surface


- 1 film surface formation; 2 relief surface formation; 3
- single slime grains;

Cleaning methods: A -

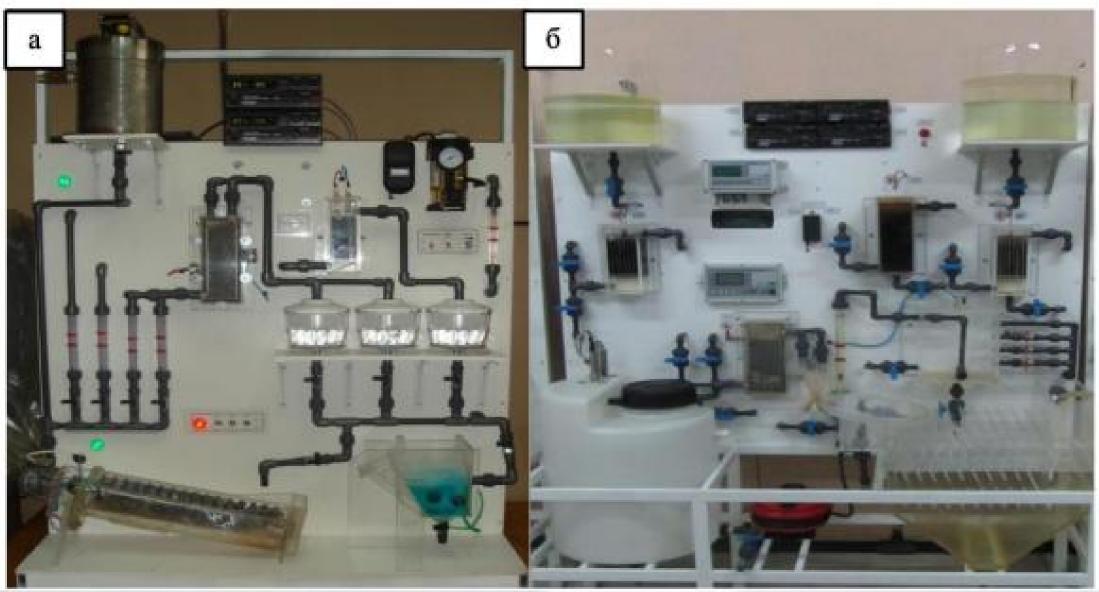
chemical dissolution with EICW products; B - mechanical (shear) removal; B - mechanical (vortex) action; D - mechanical (dispersion) removal

Cavitation area (power more than 1.5 W/cm2); Pre-cavitation area (power less than 1.5 W/cm2)

About the product

Stand in the MPTI laboratory, the use of a combined

diamond cleaning technologies


ultrasonic unit
IL100-6/1
Power (from 630 W to 10 kW) - at

Laboratory

Power (from 630 W to 10 kW) - at an operating frequency of 22 ± 10% kHz / Power change

achieved by adjusting the amplitudes of ultrasonic vibrations.

Assembled scheme of the stand

Additional extraction of 1-2% of diamonds at the stage of separation of fine grades (-6 + 1 mm), due to the use of combined technology

surface cleaning.

3000 carats per day 0.03 \$ *+ 450 \$ per day.

No. Mineral, formula Gypsum, CaSO4x2H2O Chalcopyrite, CuFeS2 Cassiterite, SnO2 Halite, NaCl Goethite, FeOxOH Hematite, Fe2O3 Serpentine, Mg3 [Si2O5](OH)4 Minnesotaite (iron talc), Fe3 Si4O10 (OH)2 Anhydrite, CaSO4 Phlogopite, K2 (Mg, Fe)6 [Si6Al2O20] (OH, F)4 Calcite, CaSO3 Saponite, (Ca,Na)0.3(Mg,Fe2 +)3(Si,AI)4O10(OH)2 * 4H2O

Identified mineral formations on

diamond surface, which can be cleared with diamond surface

Scientific subdivisions of PJSC ALROSA Concentrating plants. Institutes of the Russian Academy of Sciences and universities of a mining orientation.